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A geometrical interpretation of the coagulation equation 
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Abstract. The coagulation-fragmentation equation describes geodesic motion in an 
infinite-dimensional space. This space has a symmetric affine connection but no metric in 
general. Some advantages of the new approach are indicated. 

1. Introduction 

The coagulation equation (CE) is a probabilistic, phenomenological equation pertaining 
to a system consisting of many separate masses or ‘fragments’ that can stick together 
pairwise. It describes the evolution of the mass spectrum. When the CE is generalised 
to include fragmentation of the colliding bodies, it becomes the so-called CFE or 
‘coagulation-fragmentation equation’. The CE, and to a much smaller extent the CFE, 
have been applied to such topics as rain-drop sizes (Melzak 1953), formation of the 
solar system (Safronov 1962, 1972), growth of dust grains (Hayashi and Nakagawa 
1975), the initial stellar mass function (Nakano 1966, Silk and Takahashi 1979), and 
clustering in an expanding universe (Silk and White 1978). 

At  first sight, it appears that we know almost nothing about the generic solution of 
this highly nonlinear equation; strictly speaking, every solution depends both on the 
assumed form of the initial spectrum and on that of the coagulation coefficients, A,. 
But, in practice the situation is less bleak than this sounds. Numerical and analytical 
studies (Nakano 1966, Safronov 1972, Hayashi and Nakagawa 1975) demonstrate that 
the mass spectrum of the CE relaxes to a self-similar form after a few collision times. The 
limiting shape depends only on the form of the A,, not upon the initial spectrum. This 
property makes the CE extremely attractive for studying the formation of celestial 
systems because it replaces unknown initial conditions by known physics of coales- 
cence. 

My aim here is to sketch a new geometrical approach to the coagulation equation. In 
8 2, I rewrite the CFE as a geodesic equation for motion of a representative point in an 
infinite-dimensional space endowed with an affine connection. In 8 3, I indicate some 
merits of this approach. 

2. Interpreting coagulation as geodesic motion 

Consider first, for simplicity, a system without fragmentation. Let n(m, t)  dm be the 
volume density of fragments in the mass range [m, m +dm]. The number of fragments 
in a given mass range increases when two smaller blobs of the right total mass coalesce; 
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it will decrease whenever a blob of the specified mass agglomerates with any other piece 
(larger or smaller) : 

A ( m ' ,  m - m')n(m',  t)n(m - m', t j  dm' 
d t  

3: 

--n(m, t )  6, A(m, m')n(m' ,  t )dm' .  i l l  

(The factor 5 comes in to compensate for double counting.) 
The quantity A(m,  m') is called the coagulation coefficient and equals essentially m, 

with U the capture cross section and tl the average relative speed between any two 
fragments. 

Now to include the break-up resulting from collision. Let w(m, m') be the prob- 
ability that masses m, m' simply stick together upon colliding; then 1 - w(m, m') gives 
the probability that they fragment after their mutual capture, perhaps breaking into 
many smaller pieces. Furthermore, let nl(m"/m, m') be the distribution function of the 
new pieces m" produced thereby. By mass conservation, 

lox m"nl(m"/m, m')  dm" = m + m' 

nl(m"/m,  m')  = 0 if m">m +m'. ( 3 )  

We do not follow Safronov (1972) in putting nl  = nl(m"/m + m') because that amounts 
to assuming complete 'relaxation' during the collision, with all individuality of the 
parent blobs being lost. This would not be the case in general. 

The generalised CE (with break-up) takes the form (Safronov 1972) 

w(m', m -m')A(m' ,  m-m')n(m', t )  

Xn(m-m' , t )dm' -n(m, t )  A(m,m' )n(m' , t )dm'  

+$[mxdm''i)'n dm'nl (m/m"-m' ,m' )[ l -w(m' ,m"-m' )]  

lip 

xA(m' ,  m"- m')n(m', t)n(m"-m', t ) .  (4) 

One recovers the ordinary CE (without fragmentation) when w = 1. 
We now rewrite equation (4) as follows: (a )  all limits of integration are extended to 0 

or 03 (this is permitted in view of (3) and the vanishing of n (m, t )  for negative values of 
mass); and ( 6 )  new dummy variables m - m'+ m'', m"- m'+ m'" are introduced along 
with Dirac deltas and single integrals are replaced by double ones. Under ( a )  and (b),  
equation (4) changes to 

00 W *=$jo dm"jo  dm'{S(m-m'-m")w(m' ,  m") 
dt  

- S (m - m ') - S (m - m ") + n 1 (m/ m I ,  m ") 

x[ l -  w ( m ' ,  m")]}A(m', m")n(m', t)n(m". 0. 15) 
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It becomes more obvious that ( 5 )  is formally a geodesic-type equation if we translate 
it into the discrete case, where every mass (measured in some unit) takes an integer 
value m + j = 1 , 2 , 3  . . . , and n(m, t )+ n’(t). Equation ( 5 )  can then be written as 

(6) 

(7*) 

dn’ldt + r i l n  knf = 0 

where the affine connection has components 
rj -1 

k l -  2{aik + a j - a i k + l ) W k l  - m ( j / k ,  ~ ) [ ~ - W L I I } A ~ I .  

Note that we mark with an asterisk those equations where repeated indices are not 
summed over the set of all positive integers. Thus on both sides of (7*), j ,  k, 1 take 
unique values. It is perhaps not surprising that the connection is represented by a 
peculiar, non-covariant expression, because it is, as usual, not a tensor. 

We see that (6) is of the familiar geodesic form 

du’/dT+ f“,,ukuf = 0 (8 )  

where ui = dx’/d.r is the proper velocity, T is the proper time (or some other affine 
parameter) and 

The quantities nl(j/k, I ) ,  w k l  and Akl are, by definition, symmetric in k and 1 since 
the order in which we consider the colliding fragments is immaterial. It follows that 
r‘if = r i k ,  the same as in Riemannian geometry where equals the familiar Christoffel 
symbol. 

The analogy of (7*) with (8) can be completed by introducing coordinates whose 
velocity components are the n ‘. That is, we define Nk by n = dNk/dt, or N k  = n dt. 
A lexicon for the completed interpretation then runs as follows. 

is the affine connection. 

Coagulation Symbol 
(discrete; continuous) Geometric Meaning 

t affine parameter 
i; m coordinate label 

ri,; r(m/m’,  m’*) connection coefficient 
n’ , ( t ) ;  n(m, t )  proper velocity 

N’(d  ; N(m,  4 coordinate 

3. Applications 

I mention briefly some of the advantages of the present reformulation. 
(i) The compact notation makes it easy to write down a Taylor expansion of nk(t) 

around t = 0, by taking successive differentiations of the CE; 

(ii) If we define M” = jT m”n(m, t )  dm, then dMP/dt can be written by inspection. 
This includes the well known expressions for MO (total number of fragments) and M1 
(total mass density-conserved; see Melzak (1953)); 

(iii) One identifies two types of geometrical, conserved quantities: (a) nitj, where 
tj = j is a Killing vector (i.e. 5 j ;k  + &;j  = 0 where the semicolon denotes the usual 
covariant derivative), and ( 6 )  P=gjkn’nk, where gjk is a covariant ‘metric’ tensor 
satisfying 
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For the case Aij = C 1 ( a  +Pi)(. +pi ) ,  a particular solution of this equation is g,, CC 

Aii exp[Xk (a + p k ) N k ] .  This can be superposed linearly with the general solution 
gii K i j  to obtain another allowable metric. 

Our approach has economy and the suggestive power of geometry. But it remains to 
explore other facets of this geometric approach, e.g. (i) coordinate transformations and 
(ii) the Riemann curvature tensor Rfjkl (which can be defined solely in terms of the affine 
connection, without a metric; Adler et a1 (1965)). Then we shall know whether the 
formalism sketched here is something more than a mere curiosity. 
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